Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;25(4):457-65.
doi: 10.1165/ajrcmb.25.4.4505.

Airway inflammation and responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial lipopolysaccharide

Affiliations

Airway inflammation and responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial lipopolysaccharide

D C Zeldin et al. Am J Respir Cell Mol Biol. 2001 Oct.

Abstract

Bacterial lipopolysaccharide (LPS) is a risk factor for exacerbation of asthma and causes airway inflammation. The aim of this study was to examine the effects of disruption of prostaglandin (PG) H synthase (PGHS)-1 and PGHS-2 genes on pulmonary responses to inhaled LPS. PGHS-1(-/-), PGHS-2(-/-), and wild-type (WT) mice were exposed to 4 to 6 microg/m(3) LPS via aerosol. Enhanced pause (PenH), a measure of bronchoconstriction, was assessed using a whole-body plethysmograph before and immediately after a 4-h LPS exposure. Bronchoalveolar lavage (BAL) was performed after LPS exposure to assess inflammatory cells, cytokines/chemokines (tumor necrosis factor-alpha, interleukin-6, and macrophage inflammatory protein-2), and PGE(2). The degree of lung inflammation was scored on hematoxylin-and-eosin-stained sections. PGHS-1 and PGHS-2 protein levels were determined by immunoblotting. All mice exhibited increased PenH and methacholine responsiveness after LPS exposure; however, these changes were much more pronounced in PGHS-1(-/-) and PGHS-2(-/-) mice relative to WT mice (P < 0.05). There were no significant differences in inflammation as assessed by BAL fluid (BALF) cells or lung histology between the genotypes despite reduced BALF cytokines/chemokines and PGE(2) in PGHS-1(-/-) and PGHS-2(-/-) mice relative to WT mice (P < 0.05). PGHS-2 was upregulated more in PGHS-1(-/-) mice compared with WT mice after LPS exposure. We conclude that: (1) airway inflammation and hyperresponsiveness are dissociated in PGHS-1(-/-) and PGHS-2(-/-) mice exposed to LPS; (2) the balance of PGHS-1 and PGHS-2 is important in regulating the functional respiratory responses to inhaled LPS; and (3) neither PGHS-1 nor PGHS-2 is important in regulating basal lung function or the inflammatory responses of the lung to inhaled LPS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources