Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin

Xenobiotica. 2001 Oct;31(10):687-99. doi: 10.1080/00498250110057341.


1. The human liver UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), have been studied using microsomes from human liver and insect cells expressing human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B15). 2. The glucuronidation of SN-38 was catalysed by UGT1A1, UGT1A3, UGT1A6 and UGT1A9 as well as by liver microsomes. Among these UGT isoforms, UGT1A1 showed the highest activity of SN-38 glucuronidation at both low (1 microM) and high (200 microM) substrate concentrations. The ranking in order of activity at low and high substrate concentrations was UGT1A1 > UGT1A9 > UGT1A6 > UGT1A3 and UGT1A1 > UGT1A3 > UGT1A6 > or = UGT1A9, respectively. 3. The enzyme kinetics of SN-38 glucuronidation were examined by means of Lineweaver-Burk analysis. The activity of the glucuronidation in liver microsomes exhibits a monophasic kinetic pattern, with an apparent Km and Vmax of 35.9 microM and 134 pmol min(-1) mg(-1) protein, respectively. The UGT isoforms involved in SN-38 glucuronidation could be classified into two types: low-Km types such as UGT1A1 and UGT1A9, and high-Km types such as UGT1A3 and UGT1A6, in terms of affinity toward substrate. UGT1A1 had the highest Vmax followed by UGT1A3. Vmax of UGT1A6 and UGT1A9 were approximately 1/9 to 1/12 of that of UGT1A1. 4. The activity of SN-38 glucuronidation by liver microsomes and UGT1A1 was effectively inhibited by bilirubin. Planar and bulky phenols substantially inhibited the SN-38 glucuronidation activity of liver microsomes and UMT1A9, and/or UGT1A6. Although cholic acid derivatives strongly inhibited the activity of SN-38 glucuronidation by UGT1A3, the inhibition profile did not parallel that in liver microsomes. 5. These results demonstrate that at least four UGT1A isoforms are responsible for SN-38 glucuronidation in human livers, and suggest that the role and contribution of each differ substantially.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Camptothecin / analogs & derivatives
  • Camptothecin / metabolism*
  • Enzyme Inhibitors / pharmacology
  • Glucuronides / metabolism
  • Glucuronosyltransferase / antagonists & inhibitors
  • Glucuronosyltransferase / metabolism*
  • Humans
  • Insecta
  • Irinotecan
  • Isoenzymes / metabolism
  • Kinetics
  • Microsomes, Liver / enzymology


  • Enzyme Inhibitors
  • Glucuronides
  • Isoenzymes
  • Irinotecan
  • Glucuronosyltransferase
  • Camptothecin