Tissue oxygen tension and brain sensitivity to hypoxia

Respir Physiol. 2001 Nov 15;128(3):263-76. doi: 10.1016/s0034-5687(01)00306-1.


Mammalian brain is a highly oxidative organ and although it constitutes only a small fraction of total body weight it accounts for a disproportionately large percentage of bodily oxygen consumption (in humans about 2 and 20%, respectively). Yet, the partial pressure and concentration of oxygen in the brain are low and non-uniform. There is a large number of enzymes that use O(2) as a substrate, the most important of which is cytochrome c oxidase, the key to mitochondrial ATP production. The affinity of cytochrome c oxidase for oxygen is very high, which under normal conditions ensures undiminished activity of oxidative phosphorylation down to very low P(O(2)). By contrast, many other relevant enzymes have K(m) values for oxygen within, or above, the ambient cerebral gas tension, thus making their operations very dependent on oxygen level in the physiological range. Among its multiple, versatile functions, oxygen partial pressure and concentration control production of reactive oxygen species, expression of genes and functions of ion channels. Limitation of oxygen supply to the brain below a 'critical' level reduces, and eventually blocks oxidative phosphorylation, drastically decreases cellular (ATP) and leads to a collapse of ion gradients. Neuronal activity ceases and if oxygen is not re-introduced quickly, cells die. The object of this review is to discuss briefly the central oxygen-dependent processes in mammalian brain and the short-term consequences of O(2) deprivation, but not the mechanisms of long-term adaptation to chronic hypoxia. Particular emphasis is placed on issues which have been the focus of recent attention and/or controversy.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / physiology*
  • Hypoxia, Brain / physiopathology*
  • Oxygen Consumption / physiology*
  • Reactive Oxygen Species / metabolism


  • Reactive Oxygen Species