Biodegradation of aromatic compounds by Escherichia coli

Microbiol Mol Biol Rev. 2001 Dec;65(4):523-69, table of contents. doi: 10.1128/MMBR.65.4.523-569.2001.

Abstract

Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amines / metabolism*
  • Biodegradation, Environmental
  • Biotechnology
  • Carboxylic Acids / metabolism*
  • Carrier Proteins / metabolism
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Evolution, Molecular
  • Gene Expression Regulation, Bacterial
  • Hydrocarbons, Aromatic / metabolism*

Substances

  • Amines
  • Carboxylic Acids
  • Carrier Proteins
  • Hydrocarbons, Aromatic