Transcriptional control of dimorphism in Candida albicans
- PMID: 11731326
- DOI: 10.1016/s1369-5274(01)00275-2
Transcriptional control of dimorphism in Candida albicans
Abstract
Candida albicans uses a network of multiple signaling pathways to control the yeast-->hypha transition. These include a mitogen-activated protein kinase pathway through Cph1, the cAMP-dependent protein kinase pathway via Efg1, a pH-responsive pathway through Rim101, the Tup1-mediated repression through Rfg1 and Nrg1, and pathways represented by transcription factors Cph2, Tec1 and Czf1. These pathways control the transcription of a common set of hypha-specific genes, many of which encode known virulence factors. The link between the signaling pathways and hyphal elongation is currently unknown, but there is evidence to suggest that Cdc42 likely plays a key role in hyphal morphogenesis. Unlike pseudohyphal growth in Saccharomyces cerevisiae, hyphal elongation is regulated independently of the cell cycle. Cellular differences between pseudohyphae and hyphae are further revealed by septin localization.
Similar articles
-
The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1.Mol Cell Biol. 2001 Oct;21(19):6418-28. doi: 10.1128/MCB.21.19.6418-6428.2001. Mol Cell Biol. 2001. PMID: 11533231 Free PMC article.
-
Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen.Int J Med Microbiol. 2002 Oct;292(5-6):299-311. doi: 10.1078/1438-4221-00215. Int J Med Microbiol. 2002. PMID: 12452278 Review.
-
Signaling through protein kinases and transcriptional regulators in Candida albicans.Crit Rev Microbiol. 2003;29(3):259-75. doi: 10.1080/713610451. Crit Rev Microbiol. 2003. PMID: 14582620 Review.
-
Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes.Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):772-788. doi: 10.1016/j.bbagen.2016.10.010. Epub 2016 Oct 15. Biochim Biophys Acta Gen Subj. 2017. PMID: 27751952
-
Ssn6, an important factor of morphological conversion and virulence in Candida albicans.Mol Microbiol. 2003 Feb;47(4):1029-43. doi: 10.1046/j.1365-2958.2003.03353.x. Mol Microbiol. 2003. PMID: 12581357
Cited by
-
Antifungal resistance: why are we losing this battle?Future Microbiol. 2024;19(11):1027-1040. doi: 10.1080/17460913.2024.2342150. Epub 2024 Jun 21. Future Microbiol. 2024. PMID: 38904325 Review.
-
Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans.BMC Microbiol. 2024 Feb 27;24(1):66. doi: 10.1186/s12866-024-03213-8. BMC Microbiol. 2024. PMID: 38413885 Free PMC article.
-
Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development.Int J Oral Sci. 2023 Sep 12;15(1):40. doi: 10.1038/s41368-023-00245-0. Int J Oral Sci. 2023. PMID: 37699886 Free PMC article.
-
Anti-Fungal Potential of Structurally Diverse FDA-Approved Therapeutics Targeting Secreted Aspartyl Proteinase (SAP) of Candida albicans: an In Silico Drug Repurposing Approach.Appl Biochem Biotechnol. 2023 Mar;195(3):1983-1998. doi: 10.1007/s12010-022-04207-w. Epub 2022 Nov 19. Appl Biochem Biotechnol. 2023. PMID: 36401722
-
Comprehensive Interactome Analysis for the Sole Adenylyl Cyclase Cyr1 of Candida albicans.Microbiol Spectr. 2022 Dec 21;10(6):e0393422. doi: 10.1128/spectrum.03934-22. Epub 2022 Oct 31. Microbiol Spectr. 2022. PMID: 36314909 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
