Spectral and temporal processing in human auditory cortex

Cereb Cortex. 2002 Feb;12(2):140-9. doi: 10.1093/cercor/12.2.140.


Hierarchical processing suggests that spectrally and temporally complex stimuli will evoke more activation than do simple stimuli, particularly in non-primary auditory fields. This hypothesis was tested using two tones, a single frequency tone and a harmonic tone, that were either static or frequency modulated to create four stimuli. We interpret the location of differences in activation by drawing comparisons between fMRI and human cytoarchitectonic data, reported in the same brain space. Harmonic tones produced more activation than single tones in right Heschl's gyrus (HG) and bilaterally in the lateral supratemporal plane (STP). Activation was also greater to frequency-modulated tones than to static tones in these areas, plus in left HG and bilaterally in an anterolateral part of the STP and the superior temporal sulcus. An elevated response magnitude to both frequency-modulated tones was found in the lateral portion of the primary area, and putatively in three surrounding non-primary regions on the lateral STP (one anterior and two posterior to HG). A focal site on the posterolateral STP showed an especially high response to the frequency-modulated harmonic tone. Our data highlight the involvement of both primary and lateral non-primary auditory regions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Adult
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged