Flat medial-lateral conformity in total knee replacements does not minimize contact stresses

J Biomech. 2002 Jan;35(1):27-34. doi: 10.1016/s0021-9290(01)00172-5.

Abstract

The potential for wear in UHMWPE components for total knee replacements can be reduced by decreasing the stresses and strains arising from tibial-femoral contact. The conformity of the articular surfaces has a large effect on the resultant stresses, and components that achieve flat medial-lateral contact have been assumed to produce the lowest stresses due to their perfect conformity. We computed the stresses arising from curved and flat contact on a half-space using two-dimensional, plane strain elasticity solutions and finite element analyses to compare the performance of curved and flat indenters. These indenters were represented by a polynomial so the profiles could be continuously varied from curved to flat. Curved contact resulted in maximum stresses at the center of contact, while flat contact produced maximum stresses at the edge of contact. In addition, three contemporary tibial configurations (flat-on-flat, curved-on-flat, and curved-on-curved geometries) were analyzed using the finite element method with nonlinear material properties. The maximum contact stress, von Mises stress, and von Mises strain were lowest for the curved-on-curved model. The other configurations resulted in higher contact stresses, von Mises stresses, and von Mises strains. The perfect conformity arising from flat contact did not reduce the contact stresses in the UHMWPE component. The tensile stresses, however, were lowest for the flat-on-flat geometry compared with the other two configurations. Relating these distinct differences could prove useful in interpretation of data from simulator and retrieval studies.

MeSH terms

  • Finite Element Analysis
  • Knee Prosthesis*
  • Prosthesis Design
  • Stress, Mechanical