Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 1;240(1):108-22.
doi: 10.1006/dbio.2001.0459.

Mechanisms of mesendoderm internalization in the Xenopus gastrula: lessons from the ventral side

Affiliations
Free article

Mechanisms of mesendoderm internalization in the Xenopus gastrula: lessons from the ventral side

H Ibrahim et al. Dev Biol. .
Free article

Abstract

Two main processes are involved in driving ventral mesendoderm internalization in the Xenopus gastrula. First, vegetal rotation, an active movement of the vegetal cell mass, initiates gastrulation by rolling the peripheral blastocoel floor against the blastocoel roof. In this way, the leading edge of the internalized mesendoderm is established, that remains separated from the blastocoel roof by Brachet's cleft. Second, in a process of active involution, blastopore lip cells translocate on arc-like trails around the tip of Brachet's cleft. Hereby the lower, Xbra-negative part of the lip moves toward the interior, to contribute mainly to endoderm. In contrast, the upper, Xbra-expressing part moves toward the blastocoel roof-apposed surface of the involuted mesoderm, and eventually becomes inserted into this surface. Vegetal rotation and active mesoderm surface insertion persist over much of gastrulation ventrally. Both processes are also active dorsally. In fact, internalization processes generally spread from dorsal to ventral, though at different rates, which suggests that they are independently controlled. Ventrally and laterally, mesoderm occurs not only in the marginal zone, but also in the adjacent blastocoel roof. Such blastocoel roof mesoderm shares properties with the remaining, ectodermal roof, that are related to its function as substratum for mesendoderm migration. It repels involuted mesoderm, thus contributing to separation of cell layers, and it assembles a fibronectin matrix. These properties change as the blastocoel roof mesoderm moves into the blastopore lip during gastrulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources