Trabecular bone adaptation with an orthotropic material model
- PMID: 11784543
- DOI: 10.1016/s0021-9290(01)00192-0
Trabecular bone adaptation with an orthotropic material model
Abstract
Most bone adaptation algorithms, that attempt to explain the connection between bone morphology and loads, assume that bone is effectively isotropic. An isotropic material model can explain the bone density distribution, but not the structure and pattern of trabecular bone, which clearly has a mechanical significance. In this paper, an orthotropic material model is utilized to predict the proximal femur trabecular structure. Two hypotheses are combined to determine the local orientation and material properties of each element in the model. First, it is suggested that trabecular directions, which correspond to the orthotropic material axes, are determined locally by the maximal principal stress directions due to the multiple load cases (MLC) the femur is subject to. The second hypothesis is that material properties in each material direction can be determined using directional stimuli, thus extending existing adaptation algorithms to include directionality. An algorithm is utilized, where each iteration comprises of two stages. First, material axes are rotated to the direction of the largest principal stress that occurs from a multiple load scheme applied to the proximal femur. Next, material properties are modified in each material direction, according to a directional stimulus. Results show that local material directions correspond with known trabecular patterns, reproducing all main groups of trabeculae very well. The local directional stiffnesses, degree of anisotropy and density distribution are shown to conform to real femur morphology.
Similar articles
-
A comparative study of orthotropic and isotropic bone adaptation in the femur.Int J Numer Method Biomed Eng. 2014 Sep;30(9):873-89. doi: 10.1002/cnm.2633. Epub 2014 Apr 21. Int J Numer Method Biomed Eng. 2014. PMID: 24753477 Free PMC article.
-
Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.Biomech Model Mechanobiol. 2021 Jun;20(3):1115-1134. doi: 10.1007/s10237-021-01436-6. Epub 2021 Mar 25. Biomech Model Mechanobiol. 2021. PMID: 33768358
-
Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.Biomech Model Mechanobiol. 2016 Oct;15(5):1029-42. doi: 10.1007/s10237-015-0740-7. Epub 2015 Nov 17. Biomech Model Mechanobiol. 2016. PMID: 26578078 Free PMC article.
-
A novel approach to estimate trabecular bone anisotropy from stress tensors.Biomech Model Mechanobiol. 2015 Jan;14(1):39-48. doi: 10.1007/s10237-014-0584-6. Epub 2014 Apr 29. Biomech Model Mechanobiol. 2015. PMID: 24777672
-
The mechanical properties of trabecular bone: dependence on anatomic location and function.J Biomech. 1987;20(11-12):1055-61. doi: 10.1016/0021-9290(87)90023-6. J Biomech. 1987. PMID: 3323197 Review.
Cited by
-
[Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Dec 1;34(6):857-862. doi: 10.7507/1001-5515.201609051. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017. PMID: 29761979 Free PMC article. Chinese.
-
A comparative study of orthotropic and isotropic bone adaptation in the femur.Int J Numer Method Biomed Eng. 2014 Sep;30(9):873-89. doi: 10.1002/cnm.2633. Epub 2014 Apr 21. Int J Numer Method Biomed Eng. 2014. PMID: 24753477 Free PMC article.
-
Validation of Material Algorithms for Femur Remodelling Using Medical Image Data.Appl Bionics Biomech. 2017;2017:5932545. doi: 10.1155/2017/5932545. Epub 2017 Dec 26. Appl Bionics Biomech. 2017. PMID: 29440864 Free PMC article.
-
Mechanobiochemical bone remodelling around an uncemented acetabular component: influence of bone orthotropy.Med Biol Eng Comput. 2024 Jun;62(6):1717-1732. doi: 10.1007/s11517-024-03023-0. Epub 2024 Feb 14. Med Biol Eng Comput. 2024. PMID: 38353834
-
A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion.Med Biol Eng Comput. 2013 Feb;51(1-2):219-31. doi: 10.1007/s11517-012-0986-5. Epub 2012 Nov 21. Med Biol Eng Comput. 2013. PMID: 23179412
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
