Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 29;277(13):11116-25.
doi: 10.1074/jbc.M108670200. Epub 2002 Jan 17.

PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit

Affiliations
Free article

PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit

Marty W Mayo et al. J Biol Chem. .
Free article

Abstract

PTEN is a lipid phosphatase responsible for down-regulating the phosphoinositide 3-kinase product phosphatidylinositol 3,4,5-triphosphate. Phosphatidylinositol 3,4,5-triphosphate is involved in the activation of the anti-apoptotic effector target, Akt. Although the Akt pathway has been implicated in regulating NF-kappaB activity, it is controversial as to whether Akt activates NF-kappaB predominantly through mechanisms that regulate nuclear translocation or transactivation potential. In this report, we utilized PTEN as a natural biological inhibitor of Akt activity to study the effects on tumor necrosis factor (TNF)-induced activation of NF-kappaB. We found that the reintroduction of PTEN into prostate cells inhibited TNF-stimulated NF-kappaB transcriptional activity. PTEN failed to block TNF-induced IKK activation, IkappaBalpha degradation, p105 processing, p65 (RelA) nuclear translocation, and DNA binding of NF-kappaB. However, PTEN inhibited NF-kappaB-dependent transcription by blocking the ability of TNF to stimulate the transactivation domain of the p65 subunit. PTEN also inhibited the transactivation potential of the cyclic AMP-response element-binding protein, but this was not observed for c-Jun. The transactivation potential of p65 following TNF stimulation could be rescued from PTEN-dependent repression by re-introducing expression constructs encoding activated forms of phosphoinositide 3-kinase, Akt, or Akt and IKK. The ability of PTEN to inhibit the TNF-induced transactivation function of p65 is important, because expression of PTEN blocked TNF-stimulated NF-kappaB-dependent gene expression, thus sensitizing cells to TNF-induced apoptosis. Maintenance of the PTEN tumor suppressor protein is therefore required to modulate Akt activity and to concomitantly control the transcriptional activity of the anti-apoptotic transcription factor NF-kappaB.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources