Light-evoked postsynaptic currents (lePSCs) were recorded from ON, OFF and ON-OFF ganglion cells in dark-adapted salamander retinal slices under voltage clamp conditions, and the cell morphology was examined using Lucifer yellow fluorescence with confocal microscopy. The current-voltage relations of the lePSCs in all three types of ganglion cells are approximately linear within the cells' physiological range. The average chloride/cation conductance ratio (Deltag(Cl)(NR)/Deltag(C)(NR)) of the lePSCs is near 3, suggesting that ganglion cell light responses are associated with a greater postsynaptic conductance change at the amacrine-ganglion cell inhibitory synapses than at the bipolar-ganglion cell excitatory synapses. By comparing the charge transfer of lePSCs in normal Ringer's and in picrotoxin+strychnine+Imidazole-4-acidic acid, we found that the GABAergic and glycinergic amacrine-bipolar cell feedback synapses decreased the light-induced glutamatergic vesicle release from bipolar cells to all ganglion cells, and the degree of release reduction varied widely from ganglion cell to ganglion cell, with a range of 3-28 fold.