Influence of rotational inertia on turning performance of theropod dinosaurs: clues from humans with increased rotational inertia

J Exp Biol. 2001 Nov;204(Pt 22):3917-26.


The turning agility of theropod dinosaurs may have been severely limited by the large rotational inertia of their horizontal trunks and tails. Bodies with mass distributed far from the axis of rotation have much greater rotational inertia than bodies with the same mass distributed close to the axis of rotation. In this study, we increased the rotational inertia about the vertical axis of human subjects 9.2-fold, to match our estimate for theropods the size of humans, and measured the ability of the subjects to turn. To determine the effect of the increased rotational inertia on maximum turning capability, five subjects jumped vertically while attempting to rotate as far as possible about their vertical axis. This test resulted in a decrease in the average angle turned to 20 % of the control value. We also tested the ability of nine subjects to run as rapidly as possible through a tight slalom course of six 90 degrees turns. When the subjects ran with the 9.2-fold greater rotational inertia, the average velocity through the course decreased to 77% of the control velocity. When the subjects ran the same course but were constrained as to where they placed their feet, the average velocity through the course decreased to 65 % of the control velocity. These results are consistent with the hypothesis that rotational inertia may have limited the turning performance of theropods. They also indicate that the effect of rotational inertia on turning performance is dependent on the type of turning behavior. Characters such as retroverted pubes, reduced tail length, decreased body size, pneumatic vertebrae and the absence of teeth reduced rotational inertia in derived theropods and probably, therefore, improved their turning agility. To reduce rotational inertia, theropods may have run with an arched back and tail, an S-curved neck and forelimbs held backwards against the body.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution
  • Biomechanical Phenomena
  • Body Constitution
  • Dinosaurs / physiology*
  • Humans
  • Movement*
  • Rotation*
  • Tail
  • Torque