Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules

Mol Endocrinol. 2002 Feb;16(2):390-401. doi: 10.1210/mend.16.2.0775.


PTH-related protein (PTHrP) was first discovered as a circulating factor secreted by certain cancers and is responsible for the syndrome of humoral hypercalcemia of malignancy induced by various tumors. The similarity of its N terminus to that of PTH enables PTHrP to share the signaling properties of PTH, but the rest of the molecule possesses distinct functions, including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. PTHrP nuclear import is mediated by importin beta1. In this study we use the technique of fluorescence recovery after photobleaching to demonstrate the ability of PTHrP to shuttle between cytoplasm and nucleus and to visualize directly the transport of PTHrP into the nucleus in living cells. Endogenous and transfected PTHrP was demonstrated to colocalize with microtubule structures in situ using various high-resolution microscopic approaches, as well as in in vitro binding studies, where importin beta1, but not importin alpha, enhanced the microtubular association of PTHrP with microtubules. Significantly, the dependence of PTHrP nuclear import on microtubules was shown by the inhibitory effect of pretreatment with the microtubule-disrupting agent nocodazole on nuclear-cytoplasmic flux. These results indicate that PTHrP nuclear/nucleolar import is dependent on microtubule integrity and are consistent with a direct role for the cytoskeleton in protein transport to the nucleus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Active Transport, Cell Nucleus
  • Animals
  • Cattle
  • Cell Nucleus / metabolism*
  • Green Fluorescent Proteins
  • Luminescent Proteins / metabolism
  • Microscopy, Fluorescence
  • Microtubules / metabolism*
  • Parathyroid Hormone-Related Protein
  • Proteins / metabolism*
  • Rats
  • Rhodamines / metabolism
  • Time Factors
  • Tumor Cells, Cultured
  • beta Karyopherins / metabolism


  • KPNB1 protein, human
  • Luminescent Proteins
  • Parathyroid Hormone-Related Protein
  • Proteins
  • Rhodamines
  • beta Karyopherins
  • Green Fluorescent Proteins