The life cycle of Ca(2+) ions in dendritic spines
- PMID: 11832230
- DOI: 10.1016/s0896-6273(02)00573-1
The life cycle of Ca(2+) ions in dendritic spines
Abstract
Spine Ca(2+) is critical for the induction of synaptic plasticity, but the factors that control Ca(2+) handling in dendritic spines under physiological conditions are largely unknown. We studied [Ca(2+)] signaling in dendritic spines of CA1 pyramidal neurons and find that spines are specialized structures with low endogenous Ca(2+) buffer capacity that allows large and extremely rapid [Ca(2+)] changes. Under physiological conditions, Ca(2+) diffusion across the spine neck is negligible, and the spine head functions as a separate compartment on long time scales, allowing localized Ca(2+) buildup during trains of synaptic stimuli. Furthermore, the kinetics of Ca(2+) sources governs the time course of [Ca(2+)] signals and may explain the selective activation of long-term synaptic potentiation (LTP) and long-term depression (LTD) by NMDA-R-mediated synaptic Ca(2+).
Similar articles
-
Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.J Neurosci. 2015 Sep 2;35(35):12303-8. doi: 10.1523/JNEUROSCI.4289-14.2015. J Neurosci. 2015. PMID: 26338340 Free PMC article.
-
Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization.J Neurosci. 2000 Mar 1;20(5):1722-34. doi: 10.1523/JNEUROSCI.20-05-01722.2000. J Neurosci. 2000. PMID: 10684874 Free PMC article.
-
Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.J Neurophysiol. 1999 Mar;81(3):1404-11. doi: 10.1152/jn.1999.81.3.1404. J Neurophysiol. 1999. PMID: 10085365
-
Raising the speed limit--fast Ca(2+) handling in dendritic spines.Trends Neurosci. 2002 Sep;25(9):438-41; discussion 441. doi: 10.1016/s0166-2236(02)02232-4. Trends Neurosci. 2002. PMID: 12183197 Review.
-
Calcium dynamics in spines: link to synaptic plasticity.Exp Physiol. 2002 Nov;87(6):725-31. doi: 10.1113/eph8702463. Exp Physiol. 2002. PMID: 12530404 Review.
Cited by
-
Electric field effects on neuronal input-output relationship by regulating NMDA spikes.Cogn Neurodyn. 2024 Feb;18(1):199-215. doi: 10.1007/s11571-022-09922-y. Epub 2023 Jan 4. Cogn Neurodyn. 2024. PMID: 38406200
-
A spatial model of autophosphorylation of CaMKII in a glutamatergic spine suggests a network-driven kinetic mechanism for bistable changes in synaptic strength.bioRxiv [Preprint]. 2024 Feb 2:2024.02.02.578696. doi: 10.1101/2024.02.02.578696. bioRxiv. 2024. PMID: 38352446 Free PMC article. Preprint.
-
Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons.Neurosci Bull. 2024 Jan 30. doi: 10.1007/s12264-023-01174-y. Online ahead of print. Neurosci Bull. 2024. PMID: 38291290
-
Synaptotagmin 7 Sculpts Short-Term Plasticity at a High Probability Synapse.J Neurosci. 2024 Feb 28;44(9):e1756232023. doi: 10.1523/JNEUROSCI.1756-23.2023. J Neurosci. 2024. PMID: 38262726 Free PMC article.
-
Trans-synaptic molecular context of NMDA receptor nanodomains.bioRxiv [Preprint]. 2023 Dec 23:2023.12.22.573055. doi: 10.1101/2023.12.22.573055. bioRxiv. 2023. PMID: 38187545 Free PMC article. Preprint.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
