Ex vivo expansion of stem and progenitor cells in co-culture of mobilized peripheral blood CD34+ cells on human endothelium transfected with adenovectors expressing thrombopoietin, c-kit ligand, and Flt-3 ligand

J Hematother Stem Cell Res. 2002 Feb;11(1):127-38. doi: 10.1089/152581602753448595.

Abstract

To optimize conditions for ex vivo expansion of adult hematopoietic stem cells, we evaluated the co-culture of G-CSF mobilized human peripheral blood (PB) CD34(+) cells with endothelial cells engineered to overexpress various hematopoietic growth factors. Immortalized human bone marrow endothelial cells (BMEC) transfected with an expression vector carrying cDNA encoding the human telomerase reverse transcriptase (hTERT) and human umbilical vein endothelial cells (HUVEC) were transfected with combinations of adenovectors expressing murine c-kit ligand (KL), human thrombopoietin (TPO), human Flt3 ligand (FL), and human granulocyte-macrophage colony-stimulating factor (GM-CSF). Ex vivo expansion of PB CD34(+) cells from normal donors and non-Hodgkin lymphoma (NHL) patients in endothelial co-culture was evaluated weekly for total cell production, progenitor (CFU-GM, BFU-E) cell production, and stem cell production as measured by Week-5 Cobblestone Area Forming Cell assay (Wk-5 CAFC). HUVEC transfected with adenovectors expressing TPO, KL, and FL provided the best co-culture system for expanding CD34(+) cells. Maximal total nuclear cell, CFU-GM, and Wk-5 CAFC production occurred between weeks 2 and 3 with 113-fold, 25-fold, and 2.2-5.5-fold expansions, respectively. We did not detect significant differences when GM-CSF was added to the co-culture system. Expansion was also obtained using recombinant human cytokines, but was not maintained beyond 3 weeks. We demonstrated that continuous generation of high levels of TPO, FL, and KL as well as other factors secreted by endothelium provided a clinically relevant co-culture method for ex vivo expansion of stem and progenitor cells from cryopreserved CD34(+) populations.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / genetics
  • Antigens, CD34
  • Biological Factors / genetics
  • Biological Factors / pharmacology*
  • Blood Cells / cytology
  • Blood Cells / immunology
  • Bone Marrow / blood supply
  • Cell Division / drug effects
  • Coculture Techniques / methods
  • DNA-Binding Proteins
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / metabolism*
  • Genetic Vectors
  • Hematopoietic Stem Cell Mobilization
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / drug effects
  • Humans
  • Lymphoma, Non-Hodgkin / pathology
  • Membrane Proteins / genetics
  • Membrane Proteins / pharmacology
  • Stem Cell Factor / genetics
  • Stem Cell Factor / pharmacology
  • Telomerase / genetics
  • Thrombopoietin / genetics
  • Thrombopoietin / pharmacology
  • Transduction, Genetic
  • Umbilical Veins

Substances

  • Antigens, CD34
  • Biological Factors
  • DNA-Binding Proteins
  • Membrane Proteins
  • Stem Cell Factor
  • flt3 ligand protein
  • Thrombopoietin
  • Telomerase