Investigation of a mechanism for accelerated breakdown of immune tolerance to the primary biliary cirrhosis-associated autoantigen, pyruvate dehydrogenase complex

Lab Invest. 2002 Feb;82(2):211-9. doi: 10.1038/labinvest.3780413.


Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by autoreactive T- and B-cell responses to the highly conserved enzyme pyruvate dehydrogenase complex (PDC). In this study we have examined the breakdown of T-cell tolerance to self-PDC using a mouse model. Female SJL/J mice were sensitized intraperitoneally with foreign-PDC (bovine) and/or self-PDC (murine) in complete Freund's adjuvant, and serum, spleen, and liver tissue was taken 8 weeks later. Animals sensitized with foreign-PDC produced IgG antibodies that were reactive with both foreign and self-PDC, but splenic T cells from these animals only responded to stimulation with foreign PDC. Sensitization with self-PDC elicited neither antibodies nor reactive T cells. Significantly, cosensitization with mixed self-PDC and foreign-PDC resulted in a full breakdown of self-tolerance, with generation of both antibody and T-cell responses to self-PDC of the type seen exclusively in human PBC patients. Mild bile duct lesions deficient in CD8(+) T cells were seen 8 weeks after sensitization with either foreign or self-PDC. However, after sensitization with mixed self-PDC and foreign-PDC, these lesions were significantly larger and heavily infiltrated by CD8(+) T cells. Liver-infiltrating T cells derived from the self-PDC and foreign-PDC cosensitized but not from control animals showed reactivity with self-PDC, suggesting a possible role for autoreactive PDC-specific T-cell responses in the pathogenesis of the observed histologic changes. It is likely that B-cell cross-reactivity between foreign and self-PDC enhances the potential for breakdown of T-cell self-tolerance by allowing efficient presentation of self-antigens in the inoculum. This model may provide a useful system for investigating the etiology and treatment of PBC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoantigens / immunology*
  • Cell Division
  • Female
  • Immune Tolerance*
  • Liver Cirrhosis, Biliary / immunology*
  • Mice
  • Phenotype
  • Pyruvate Dehydrogenase Complex / immunology*
  • T-Lymphocytes / cytology
  • T-Lymphocytes / immunology


  • Autoantigens
  • Pyruvate Dehydrogenase Complex