Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N-methyl-d-aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders.