Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis

NMR Biomed. 2002 Apr;15(2):132-42. doi: 10.1002/nbm.731.


The purpose of this study was to determine the reproducibility of dynamic contrast-enhanced (DCE)-MRI and compare quantitative kinetic parameters with semi-quantitative methods, and whole region-of-interest (ROI) with pixel analysis. Twenty-one patients with a range of tumour types underwent paired MRI examinations within a week, of which 16 pairs were evaluable. A proton density-weighted image was obtained prior to a dynamic series of 30 T(1)-weighted spoiled gradient echo images every 11.9 s with an intravenous bolus of gadopentetate dimeglumine given after the third baseline data point. Identical ROIs around the whole tumour and in skeletal muscle were drawn by the same observer on each pair of examinations and used for the reproducibility analysis. Semi-quantitative parameters, gradient, enhancement and AUC (area under the curve) were derived from tissue enhancement curves. Quantitative parameters (K(trans), k(ep), v(e)) were obtained by the application of the Tofts' model. Analysis was performed on data averaged across the whole ROI and on the median value from individual pixels within the ROI. No parameter showed a significant change between examinations. For all parameters except K(trans), the variability was not dependent on the parameter value, so the absolute values for the size of changes needed for significance should be used for future reference rather than percentages. The size of change needed for significance in a group of 16 in tumours for K(trans), k(ep) and v(e) was -14 to +16%, -0.20 ml/ml/min (15%) and -1.9[?]ml/ml (6%), respectively (pixel analysis), and -16 to +19%, -0.23 ml/ml/min (16%) and +/- 1.9[?]ml/ml (6%) (whole ROI analysis). For a single tumour, changes greater than -45 to +83%, +/- 0.78 ml/ml/min (60%) and +/- 7.6 ml/ml (24%), respectively, would be significant (pixel analysis). For gradient, enhancement and AUC the size of change needed for significance in tumours was -0.24 (17%), -0.05 (6%) and -0.06 (8%), respectively for a group of 16 (pixel analysis), and +/- 0.96 (68%), +/- 0.20 (25%) and +/- 0.22 (32%) for individuals. In muscle, the size of change needed for significance in a group of 16 for K(trans), k(ep) and v(e) was -30 to +44%, +/- 0.81 ml/ml/min (61%) and +/- 1.7 ml/ml (13%). For gradient, enhancement and AUC it was +/- 0.09 (20%), +/- 0.02 (8%) and +/- 0.03 (12%). v(e), enhancement and AUC are highly reproducible DCE-MRI parameters. K(trans), k(ep) and gradient have greater variability, with larger changes in individuals required to be statistically significant, but are nevertheless sufficiently reproducible to detect changes greater than 14-17% in a cohort of 16 patients. Pixel analyses slightly improve reproducibility estimates and retain information about spatial heterogeneity. Reproducibility studies are recommended when treatment effects are being monitored.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacokinetics
  • Bibenzyls / pharmacokinetics
  • Contrast Media
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging / methods
  • Muscle, Skeletal / anatomy & histology*
  • Neoplasms / blood supply
  • Neoplasms / pathology*
  • Reproducibility of Results
  • Stilbenes*
  • Xanthenes / pharmacokinetics
  • Xanthones*


  • Antineoplastic Agents
  • Bibenzyls
  • Contrast Media
  • Stilbenes
  • Xanthenes
  • Xanthones
  • vadimezan
  • combretastatin