Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease

Brain Res Dev Brain Res. 2002 Feb 28;133(2):127-39. doi: 10.1016/s0165-3806(02)00280-8.

Abstract

Lesch-Nyhan disease, a neurogenetic disorder caused by congenital deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase, is associated with a prominent loss of striatal dopamine. The current studies address the hypothesis that oxidant stress causes damage or dysfunction of nigrostriatal dopamine neurons in a knockout mouse model of the disease, by assessing several markers of oxidative damage and free radical scavenging systems. Some of these measures provided evidence for an increase in oxidative stress in the mutant mice (aconitase activity, oxidized glutathione, and lipid peroxides), but others did not (superoxide dismutase, protein thiol content, carbonyl protein content, total glutathione, glutathione peroxidase, catalase, and thiobarbituric reducing substances). Immunolocalization of heme-oxygenase 1 provided no evidence for oxidative stress restricted to specific elements of the striatum or midbrain in the mutants. Striatal dopamine systems of the mutant mice were more vulnerable to a challenge with the neurotoxin 6-hydroxydopamine, but they were not protected by cross-breeding the mutants with transgenic mice over-expressing superoxide dismutase. Overall, these data provide evidence for increased oxidative stress, but the failure to protect the knockout mice by over-expressing SOD1 argues that oxidative stress is not the sole process responsible for the loss of striatal dopamine.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Aconitate Hydratase / genetics
  • Aconitate Hydratase / metabolism
  • Animals
  • Cell Death / genetics*
  • Disease Models, Animal
  • Dopamine / deficiency*
  • Female
  • Free Radical Scavengers / metabolism*
  • Heme Oxygenase (Decyclizing) / metabolism
  • Heme Oxygenase-1
  • Lesch-Nyhan Syndrome / enzymology*
  • Lesch-Nyhan Syndrome / genetics
  • Lesch-Nyhan Syndrome / physiopathology
  • Lipid Peroxides / genetics
  • Lipid Peroxides / metabolism
  • Male
  • Membrane Proteins
  • Mice
  • Mice, Knockout
  • Mice, Transgenic / physiology
  • Mutation / physiology
  • Neostriatum / enzymology*
  • Neostriatum / pathology
  • Neostriatum / physiopathology
  • Neurons / enzymology*
  • Neurons / pathology
  • Oxidative Stress / genetics*
  • Oxidopamine / pharmacology
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism
  • Superoxide Dismutase-1

Substances

  • Free Radical Scavengers
  • Lipid Peroxides
  • Membrane Proteins
  • 3,4-Dihydroxyphenylacetic Acid
  • Oxidopamine
  • Heme Oxygenase (Decyclizing)
  • Heme Oxygenase-1
  • Hmox1 protein, mouse
  • Sod1 protein, mouse
  • Superoxide Dismutase
  • Superoxide Dismutase-1
  • Aconitate Hydratase
  • Dopamine