A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
- PMID: 11884642
- PMCID: PMC101367
- DOI: 10.1093/nar/30.6.e23
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
Abstract
Heterologous markers are important tools required for the molecular dissection of gene function in many organisms, including Saccharomyces cerevisiae. Moreover, the presence of gene families and isoenzymes often makes it necessary to delete more than one gene. We recently introduced a new and efficient gene disruption cassette for repeated use in budding yeast, which combines the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. Here we describe an additional set of four completely heterologous loxP-flanked marker cassettes carrying the genes URA3 and LEU2 from Kluyveromyces lactis, his5(+) from Schizosaccharomyces pombe and the dominant resistance marker ble(r) from the bacterial transposon Tn5, which confers resistance to the antibiotic phleomycin. All five loxP--marker gene--loxP gene disruption cassettes can be generated using the same pair of oligonucleotides and all can be used for gene disruption with high efficiency. For marker rescue we have created three additional Cre expression vectors carrying HIS3, TRP1 or ble(r) as the yeast selection marker. The set of disruption cassettes and Cre expression plasmids described here represents a significant further development of the marker rescue system, which is ideally suited to functional analysis of the yeast genome.
Figures
Similar articles
-
A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe.Biosci Biotechnol Biochem. 2004 Mar;68(3):545-50. doi: 10.1271/bbb.68.545. Biosci Biotechnol Biochem. 2004. PMID: 15056885
-
A new efficient gene disruption cassette for repeated use in budding yeast.Nucleic Acids Res. 1996 Jul 1;24(13):2519-24. doi: 10.1093/nar/24.13.2519. Nucleic Acids Res. 1996. PMID: 8692690 Free PMC article.
-
Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae.Plasmid. 2002 Mar;47(2):94-107. doi: 10.1006/plas.2001.1557. Plasmid. 2002. PMID: 11982331
-
Measurement of spatial proximity and accessibility of chromosomal loci in Saccharomyces cerevisiae using Cre/loxP site-specific recombination.Methods Mol Biol. 2009;557:55-63. doi: 10.1007/978-1-59745-527-5_5. Methods Mol Biol. 2009. PMID: 19799176 Free PMC article. Review.
-
Transformation systems of non-Saccharomyces yeasts.Crit Rev Biotechnol. 2001;21(3):177-218. doi: 10.1080/20013891081719. Crit Rev Biotechnol. 2001. PMID: 11599715 Review.
Cited by
-
A unified alternative telomere-lengthening pathway in yeast survivor cells.Mol Cell. 2021 Apr 15;81(8):1816-1829.e5. doi: 10.1016/j.molcel.2021.02.004. Epub 2021 Feb 26. Mol Cell. 2021. PMID: 33639094 Free PMC article.
-
Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe.PLoS One. 2016 Oct 13;11(10):e0163950. doi: 10.1371/journal.pone.0163950. eCollection 2016. PLoS One. 2016. PMID: 27736907 Free PMC article.
-
Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities.Microb Cell Fact. 2015 Jun 26;14:91. doi: 10.1186/s12934-015-0278-5. Microb Cell Fact. 2015. PMID: 26112740 Free PMC article.
-
The Mechanisms of Thiosulfate Toxicity against Saccharomyces cerevisiae.Antioxidants (Basel). 2021 Apr 22;10(5):646. doi: 10.3390/antiox10050646. Antioxidants (Basel). 2021. PMID: 33922196 Free PMC article.
-
TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae.PLoS One. 2015 Mar 13;10(3):e0120250. doi: 10.1371/journal.pone.0120250. eCollection 2015. PLoS One. 2015. PMID: 25767889 Free PMC article.
References
-
- Goffeau A., Barrell,B.G., Bussey,H., Davis.R.W., Dujon,B., Feldmann,H., Galibert,F., Hoheisel,J.D., Jacq,C., Johnston,M. et al. (1996) Life with 6000 genes. Science, 274, 546, 563–567. - PubMed
-
- McElver J. and Weber,S. (1992) Flag N-terminal epitope overexpression of bacterial alkaline phosphatase and Flag C-terminal epitope tagging by PCR one-step targeted integration. Yeast, 8 (special issue), S627.
-
- Niedenthal R., Riles,L., Güldener,U., Klein,S., Johnston,M. and Hegemann,J.H. (1999) Systematic analysis of S. cerevisiae chromosome VIII genes. Yeast, 15, 1775–1796. - PubMed
-
- Entian K.-D., Schuster,T., Hegemann,J.H., Becher,D., Feldmann,H., Guldner,U., Gotz,R., Hansen,M., Hollenberg,C.P., Jansen,G. et al. (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol. Gen. Genet., 262, 683–702. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
