Log-periodic route to fractal functions

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036142. doi: 10.1103/PhysRevE.65.036142. Epub 2002 Mar 7.

Abstract

Log-periodic oscillations have been found to decorate the usual power-law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance symmetry. For Ising or Potts spins with ferromagnetic interactions on hierarchical systems, the relative magnitude of the log-periodic corrections are usually very small, of order 10(-5). In growth processes [diffusion limited aggregation (DLA)], rupture, earthquake, and financial crashes, log-periodic oscillations with amplitudes of the order of 10% have been reported. We suggest a "technical" explanation for this 4 order-of-magnitude difference based on the property of the "regular function" g(x) embodying the effect of the microscopic degrees of freedom summed over in a renormalization group (RG) approach F(x)=g(x)+mu(-1)F(gamma x) of an observable F as a function of a control parameter x. For systems for which the RG equation has not been derived, the previous equation can be understood as a Jackson q integral, which is the natural tool for describing discrete-scale invariance. We classify the "Weierstrass-type" solutions of the RG into two classes characterized by the amplitudes A(n) of the power-law series expansion. These two classes are separated by a novel "critical" point. Growth processes (DLA), rupture, earthquake, and financial crashes thus seem to be characterized by oscillatory or bounded regular microscopic functions that lead to a slow power-law decay of A(n), giving strong log-periodic amplitudes. If in addition, the phases of A(n) are ergodic and mixing, the observable presents self-affine nondifferentiable properties. In contrast, the regular function of statistical physics models with "ferromagnetic"-type interactions at equilibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables.