We measured the emissions of 26 gas-phase organic compounds in environmental tobacco smoke (ETS) using a model room that simulates realistic conditions in residences and offices. Exposure-relevant emission factors (EREFs), which include the effects of sorption and re-emission over a 24-h period, were calculated by mass balance from measured compound concentrations and chamber ventilation rates in a 50-m3 room constructed and furnished with typical materials. Experiments were conducted at three smoking rates (5, 10, and 20 cigarettes day(-1)), three ventilation rates (0.3, 0.6, and 2 h(-1)), and three furnishing levels (wallboard with aluminum flooring, wallboard with carpet, and full furnishings). Smoking rate did not affect EREFs, suggesting that sorption was linearly related to gas-phase concentration. Furnishing level and ventilation rate in the model room had little effect on EREFs of several ETS compounds including 1,3-butadiene, acrolein, acrylonitrile, benzene, toluene, and styrene. However, sorptive losses at low ventilation with full furnishings reduced EREFs for the ETS tracers nicotine and 3-ethenylpyridine by as much as 90 and 65% as compared to high ventilation, wallboard/aluminum experiments. Likewise, sorptive losses were 40-70% for phenol, cresols, naphthalene, and methylnaphthalenes. Sorption persisted for many compounds; for example, almost all of the sorbed nicotine and most of the sorbed cresol remained sorbed 3 days after smoking. EREFs can be used in models and with ETS tracer-based methods to refine and improve estimates of exposures to ETS constituents.