Genetic variability in DNA repair may contribute to hypersensitivity to ionizing radiation (IR) and susceptibility to breast cancer. We used samples collected from a clinic-based breast cancer case-control study to test the working hypothesis that amino acid substitution variants of DNA repair genes may contribute to prolonged cell-cycle delay following IR and breast cancer risk. Fluorescence-activated cell sorter (FACS) analysis was used to measure cell-cycle delay. PCR-restriction fragment length polymorphism (RFLP) assays were used to determine four genotypes of three DNA repair genes: XRCC1, 194 Arg/Trp and 399 Arg/Gln; XRCC3, 241 Thr/Met; and APE1, 148 Asp/Glu. The data showed that breast cancer patients had a significantly higher delay index than that of controls (P < 0.001); the means +/- SD for cases and controls were 36.0 +/- 13.1 (n = 118) and 31.4 +/- 11.5 (n = 225), respectively. There was a significant dose-response relationship between delay index, categorized into quartiles, and an increasing risk of breast cancer (crude odds ratios: 1.00, 1.00, 1.27, and 2.46, respectively; P(trend) = 0.002). In controls, prolonged cell-cycle delay was significantly associated with the number of variant alleles in APE1 Asp148Glu and XRCC1 Arg399Gln genotypes (P(trend) = 0.001). Although larger studies are needed to validate the results, our data suggest that an inherited hypersensitivity to IR may contribute to human breast carcinogenesis.
Copyright 2002 Wiley-Liss, Inc.