Lysine 270 in the third intracellular domain of the oxytocin receptor is an important determinant for G alpha(q) coupling specificity

Mol Endocrinol. 2002 Apr;16(4):814-23. doi: 10.1210/mend.16.4.0807.

Abstract

To identify structural elements important to specific G alpha(q) coupling in the oxytocin receptor (OTR), intracellular domains were exchanged between OTR and G alpha(s)-coupled vasopressin V(2) receptors (V(2)Rs). Substitution of sequence from the second (2i) and third (3i) intracellular domains of V(2)R into comparable positions in OTR markedly reduced ligand affinity and resulted in a loss of G alpha(q) coupling. Substitution of the 2i domain of OTR into V(2)R decreased ligand affinity and vasopressin-stimulated adenylyl cyclase activity and only slightly increased phosphatidylinositide turnover. In contrast, substitution of the OTR3i domain into V(2)R produced a receptor chimera with high ligand affinity, decreased vasopressin-stimulated adenylyl cyclase activity, and markedly enhanced ligand-stimulated phosphatidylinositide turnover. The C-terminal 36 amino acids, but not the N-terminal 13 amino acids, of the OTR3i domain contained the determinants critical for enhanced activation of PLC. Mutation of a single lysine in the C-terminal OTR3i sequence to the corresponding V(2)R residue (valine) eliminated the enhanced ability of the V(2)R chimera to stimulate PLC but did not affect maximal adenylyl cyclase stimulation. Furthermore, mutation of this residue (K270) in wild-type OTR completely abolished the ability of the receptor to stimulate phosphatidylinositide turnover, with only a small reduction in ligand affinity. These data demonstrate that OTR K270 is critically important in the stimulation by OTR of phosphatidylinositide turnover and that this determinant can also increase this activity in the V(2)R chimera. Mutation of K270 also adversely affects the ability of OTR to stimulate ERK1/2 phosphorylation. Therefore, this residue plays an important role in the specificity of OTR/G alpha(q)/PLC coupling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Amino Acid Sequence
  • Animals
  • COS Cells
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Heterotrimeric GTP-Binding Proteins / metabolism*
  • Ligands
  • Lysine / metabolism*
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • Molecular Sequence Data
  • Phosphatidylinositols / metabolism
  • Phosphorylation
  • Point Mutation
  • Receptors, Oxytocin / chemistry
  • Receptors, Oxytocin / metabolism*
  • Receptors, Vasopressin / metabolism
  • Structure-Activity Relationship

Substances

  • Ligands
  • Phosphatidylinositols
  • Receptors, Oxytocin
  • Receptors, Vasopressin
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Heterotrimeric GTP-Binding Proteins
  • Adenylyl Cyclases
  • Lysine