Use of molecular techniques in bioremediation

Acta Microbiol Pol. 2001;50(3-4):205-18.

Abstract

In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to provide a better understanding and better control of environmental biotechnology processes, thus enabling more cost effective and efficient bioremediation of our toxic waste and contaminated environments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Bacteria / genetics
  • Bacteria / metabolism*
  • Biodegradation, Environmental*
  • Biotechnology / methods
  • DNA, Bacterial / genetics
  • Polymerase Chain Reaction
  • Sequence Analysis, DNA
  • Soil Pollutants / metabolism*
  • Water Pollutants, Chemical / metabolism*

Substances

  • DNA, Bacterial
  • Soil Pollutants
  • Water Pollutants, Chemical