The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2

J Biol Inorg Chem. 2002 Apr;7(4-5):500-13. doi: 10.1007/s00775-001-0325-z. Epub 2002 Feb 14.

Abstract

Methyl-coenzyme M reductase (MCR) is a nickel enzyme catalyzing the formation of methane from methyl-coenzyme M and coenzyme B in all methanogenic archaea. The active purified enzyme exhibits the axial EPR signal MCR-red1 and in the presence of coenzyme M and coenzyme B the rhombic signal MCR-red2, both derived from Ni(I). Two other EPR-detectable states of the enzyme have been observed in vivo and in vitro designated MCR-ox1 and MCR-ox2 which have quite different nickel EPR signals and which are inactive. Until now the MCR-ox1 and MCR-ox2 states could only be induced in vivo. We report here that in vitro the MCR-red2 state is converted into the MCR-ox1 state by the addition of polysulfide and into a light-sensitive MCR-ox2 state by the addition of sulfite. In the presence of O(2) the MCR-red2 state was converted into a novel third state designated MCR-ox3 and exhibiting two EPR signals similar but not identical to MCR-ox1 and MCR-ox2. The formation of the MCR-ox states was dependent on the presence of coenzyme B. Investigations with the coenzyme B analogues S-methyl-coenzyme B and desulfa-methyl-coenzyme B indicate that for the induction of the MCR-ox states the thiol group of coenzyme B is probably not of importance. The results were obtained with purified active methyl-coenzyme M reductase isoenzyme I from Methanothermobacter marburgensis. They are discussed with respect to the nickel oxidation states in MCR-ox1, MCR-ox2 and MCR-ox3 and to a possible presence of a second redox active group in the active site. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00775-001-0325-z.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chloroform / chemistry
  • Citric Acid / chemistry
  • Electron Spin Resonance Spectroscopy
  • Euryarchaeota / enzymology*
  • Hydrogen-Ion Concentration
  • Light
  • Metalloporphyrins / chemistry
  • Nickel
  • Oxidation-Reduction
  • Oxidoreductases / chemistry*
  • Oxidoreductases / metabolism*
  • Oxygen / chemistry
  • Phosphothreonine / analogs & derivatives
  • Phosphothreonine / chemistry
  • Spectrophotometry, Ultraviolet
  • Sulfides / chemistry
  • Sulfites / chemistry

Substances

  • Metalloporphyrins
  • Sulfides
  • Sulfites
  • titanium citrate
  • 7-mercaptoheptanoylthreonine phosphate
  • Phosphothreonine
  • Citric Acid
  • factor F430
  • Nickel
  • Chloroform
  • polysulfide
  • Oxidoreductases
  • methyl coenzyme M reductase
  • Oxygen