Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;15(3):233-42.
doi: 10.1094/MPMI.2002.15.3.233.

Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state

Affiliations
Free article

Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state

Thomas Hurek et al. Mol Plant Microbe Interact. 2002 Mar.
Free article

Abstract

The extent to which the N2-fixing bacterial endophyte Azoarcus sp. strain BH72 in the rhizosphere of Kallar grass can provide fixed nitrogen to the plant was assessed by evaluating inoculated plants grown in the greenhouse and uninoculated plants taken from the natural environment. The inoculum consisted of either wild-type bacteria or nifK- mutant strain BHNKD4. In N2-deficient conditions, plants inoculated with strain BH72 (N2-fixing test plants) grew better and accumulated more nitrogen with a lower delta15N signature after 8 months than did plants inoculated with the mutant strain (non-N2-fixing control plants). Polyadenylated or polymerase chain reaction-amplified BH72 nifH transcripts were retrieved from test but not from control plants. BH72 nifH transcripts were abundant. The inocula could not be reisolated. These results indicate that Azoarcus sp. BH72 can contribute combined N2 to the plant in an unculturable state. Abundant BH72 nifH transcripts were detected also in uninoculated plants taken from the natural environment, from which Azoarcus sp. BH72 also could not be isolated. Quantification of nitrogenase gene transcription indicated a high potential of strain BH72 for biological N2 fixation in association with roots. Phylogenetic analysis of nitrogenase sequences predicted that uncultured grass endophytes including Azoarcus spp. are ecologically dominant and play an important role in N2-fixation in natural grass ecosystems.

PubMed Disclaimer

Publication types

LinkOut - more resources