Killer cell immunoglobulin-like receptors (KIR) play a critical role in the regulation of natural killer (NK) cell activity through their recognition of class I MHC molecules expressed on target cells. KIR recognition provides vital information to NK cells about whether a target cell should be lysed or spared. Understanding the molecular mechanism of this recognition has remained a strong focus of investigation. This has resulted in the crystal structures of several members of the KIR family and more recently the determinations of the three dimensional structures of KIR2DL2 and KIR2DL1 complexed with their respective ligands, HLA-Cw3 and HLA-Cw4. A strong structural conservation has been revealed both in the receptor design and in the overall mode of KIR binding to class I molecules. Nevertheless, distinct differences in the receptor binding sites allow for high specificity between ligands. Furthermore, unexpected similarities with T-cell receptor (TCR) recognition of MHC molecules are also observed. The detailed interactions between KIR and HLA-C molecules and their functional implications will be reviewed here.