Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002;110(2):199-211.
doi: 10.1016/s0306-4522(01)00460-2.

Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease

Affiliations

Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease

R G Nagele et al. Neuroscience. 2002.

Abstract

Amyloid beta(1-42), a major component of amyloid plaques, binds with exceptionally high affinity to the alpha 7 nicotinic acetylcholine receptor and accumulates intracellularly in neurons of Alzheimer's disease brains. In this study, we investigated the possibility that this binding plays a key role in facilitating intraneuronal accumulation of amyloid beta(1-42). Consecutive section immunohistochemistry and digital imaging were used to reveal the spatial relationship between amyloid beta(1-42) and the alpha 7 receptor in affected neurons of Alzheimer's disease brains. Results showed that neurons containing substantial intracellular accumulations of amyloid beta(1-42) invariably express relatively high levels of the alpha 7 receptor. Furthermore, this receptor is highly co-localized with amyloid beta(1-42) within neurons of Alzheimer's disease brains. To experimentally test the possibility that the binding interaction between exogenous amyloid beta(1-42) and the alpha 7 receptor facilitates internalization and intracellular accumulation of amyloid beta(1-42) in Alzheimer's disease brains, we studied the fate of exogenous amyloid beta(1-42) and its interaction with the alpha 7 receptor in vitro using cultured, transfected neuroblastoma cells that express elevated levels of this receptor. Transfected cells exhibited rapid binding, internalization and accumulation of exogenous amyloid beta(1-42), but not amyloid beta(1-40). Furthermore, the rate and extent of amyloid beta(1-42) internalization was related directly to the alpha 7 receptor protein level, since (1) the rate of amyloid beta(1-42) accumulation was much lower in untransfected cells that express much lower levels of this receptor and (2) internalization was effectively blocked by alpha-bungarotoxin, an alpha 7 receptor antagonist. As in neurons of Alzheimer's disease brains, the alpha 7 receptor in transfected cells was precisely co-localized with amyloid beta(1-42) in prominent intracellular aggregates. Internalization of amyloid beta(1-42) in transfected cells was blocked by phenylarsine oxide, an inhibitor of endocytosis. We suggest that the intraneuronal accumulation of amyloid beta(1-42) in Alzheimer's disease brains occurs predominantly in neurons that express the alpha 7 receptor. In addition, internalization of amyloid beta(1-42) may be facilitated by the high-affinity binding of amyloid beta(1-42) to the alpha 7 receptor on neuronal cell surfaces, followed by endocytosis of the resulting complex. This provides a plausible explanation for the selective vulnerability of neurons expressing the alpha 7 receptor in Alzheimer's disease brains and for the fact that amyloid beta(1-42) is the dominant amyloid beta peptide species in intracellular accumulations and amyloid plaques.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources