Vacuum ultraviolet spectroscopy and chemistry by photoionization and photoelectron methods

Annu Rev Phys Chem. 2002:53:101-40. doi: 10.1146/annurev.physchem.53.082001.144416. Epub 2001 Oct 4.

Abstract

The recent developments of vacuum ultraviolet (VUV) laser and third generation synchrotron radiation sources, together with the introduction of pulsed field ionization (PFI) schemes for photoion-photoelectron detection, have had a profound impact on the field of VUV spectroscopy and chemistry. Owing to the mediation of near-resonant autoionizing states, rovibronic states of ions with negligible Franck-Condon factors for direct photoionization can be examined by VUV-PFI measurements with rotational resolutions. The VUV-PFI spectra thus obtained have provided definitive ionization energies (IEs) for many small molecules. The recent synchrotron-based PFI-photoelectron-photoion coincidence experiments have demonstrated that dissociative photoionization thresholds for a range of molecules can be determined to the same precision as in PFI-photoelectron measurements. Combining appropriate dissociation thresholds and IEs measured in PFI studies, thermochemical data for many neutrals and cations can be determined with unprecedented precision. The further development of two-color excitation-ionization schemes promises to expand the scope of spectroscopic and chemical applications using the photoionization-photoelectron method.