Disruption of the alternative oxidase gene in Magnaporthe grisea and its impact on host infection

Mol Plant Microbe Interact. 2002 May;15(5):493-500. doi: 10.1094/MPMI.2002.15.5.493.


Plants and numerous fungi including Magnaporthe grisea protect mitochondria from interference by respiration inhibitors by expressing alternative oxidase, the enzymatic core of alternative respiration. The alternative oxidase gene AOXMg of M. grisea was disrupted. Several lines of evidence suggested that the disruption of AOXMg was sufficient to completely curb the expression of alternative respiration. In the infection of barley leaves, several AOXMg-minus and, thus, alternative respiration-deficient mutants of M. grisea retained their pathogenicity without significant impairment of virulence. However, differences between the wild-type strain and an AOXMg-minus mutant were apparent under oxidative stress conditions generated by the treatment of infected barley leaves with the commercial respiration inhibitor azoxystrobin. Symptom development was effectively suppressed on leaves infected with the alternative respiration-deficient mutant, while lesions on leaves infected with the wild-type strain continued to develop at much higher inhibitor doses. However, respective lesions rarely developed to the stage of full maturity. The results did not conform to a previous model implying that expression of alternative respiration is silenced during pathogenesis by the presence of constitutive plant antioxidants. Rather, alternative respiration provided protection from azoxystrobin during both saprophytic and infectious stages of the pathogen. The nature of similar oxidative stress conditions in the ecology of M. grisea remains an open question.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylates / pharmacology
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Hordeum / microbiology*
  • Magnaporthe / enzymology
  • Magnaporthe / genetics*
  • Magnaporthe / pathogenicity
  • Methacrylates
  • Mitochondria / enzymology
  • Mitochondrial Proteins
  • Molecular Sequence Data
  • Mutation
  • Mycelium / drug effects
  • Mycelium / growth & development
  • Oxidative Stress / drug effects
  • Oxidative Stress / physiology
  • Oxidoreductases / genetics*
  • Oxidoreductases / metabolism
  • Plant Leaves / microbiology
  • Plant Proteins
  • Pyrimidines / pharmacology
  • Strobilurins
  • Virulence


  • Acrylates
  • Fungal Proteins
  • Methacrylates
  • Mitochondrial Proteins
  • Plant Proteins
  • Pyrimidines
  • Strobilurins
  • Oxidoreductases
  • alternative oxidase
  • azoxystrobin

Associated data

  • GENBANK/AF325683