The mitochondrial common deletion in Parkinson's disease and related movement disorders

Parkinsonism Relat Disord. 2002 Jan;8(3):165-70. doi: 10.1016/s1353-8020(01)00041-4.


The mitochondrial 4977-bp common deletion has been reported in some studies to occur exclusively or with increased frequency in the midbrain of patients with Parkinson's disease (PD). Other studies could not confirm these results; rather, it was suggested that the mitochondrial common deletion is associated with aging in the midbrain and not PD. One possible explanation for these conflicting results is the difficulty in quantifying mitochondrial DNA deletions or mutations in the whole midbrain or substantia nigra (SN) while only a subset of midbrain neurons degenerate in PD. In addition, none of the studies has addressed the cell types with the common deletion within the midbrain. In this study we used in situ hybridization to detect the common deletion in sections of midbrain from patients with PD, multiple system atrophy-parkinsonian type (MSA-P), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), age-matched controls, and individuals of different ages. The results demonstrated that the mitochondrial common deletion accumulated primarily in neurons but not glia in both the SN and other midbrain regions. There was no significant difference in the number or distribution of neurons with the common deletion or the average of the mean densities (AMD) of staining with the common deletion in nigral neurons among patients with PD, MSA-P, PSP, DLB, or age-matched controls. In addition, there was no difference in the number or distribution of neurons with the common deletion in nigral neurons between any age group, although there was a tendency for the common deletion to increase in the non-nigral neurons in older patients. These data indicate that accumulation of the 4977-bp common deletion in mitochondrial DNA in midbrain occurred primarily in neurons, and by this cytological approach, it was not associated with nigral neurodegeneration in the common movement disorders or aging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aging / genetics
  • Cadaver
  • Child
  • DNA, Mitochondrial / genetics*
  • Gene Deletion*
  • Humans
  • In Situ Hybridization
  • Mesencephalon / physiopathology
  • Middle Aged
  • Movement Disorders / genetics*
  • Neurodegenerative Diseases / genetics*
  • Parkinson Disease / genetics*


  • DNA, Mitochondrial