Spatio-temporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat

Neuroscience. 2002;112(1):195-215. doi: 10.1016/s0306-4522(02)00039-8.


Many psychophysical experiments on perceptual learning in humans show increases of performance that are most probably based on functions of early visual cortical areas. Long-term plasticity of the primary visual cortex has so far been shown in vivo with the use of visual stimuli paired with electrical or pharmacological stimulation at the cellular level. Here, we report that plasticity in the adult visual cortex can be achieved by repetitive visual stimulation. First, spatial receptive field profiles of single units (n=38) in area 17 or 18 of the anesthetized cat were determined with optimally oriented flashing light bars. Then a conditioning protocol was applied to induce associative synaptic plasticity. The receptive field center and an unresponsive region just outside the excitatory receptive field were synchronously stimulated ('costimulation', repetition rate 1 Hz; for 10-75 min). After costimulation the receptive field and its adjacent regions were mapped again. We observed specific increases of the receptive field size, changes of the receptive field subfield structure as well as shifts in response latency. In 37% of the cells the receptive field size increased specifically towards the stimulated side but not towards the non-stimulated opposite side of the receptive field. In addition, changes in the relative strength and size of the on and off subfield regions were observed. These specific alterations were dependent on the level of neuronal activity during costimulation. During recovery, the new responses dropped down to 120% of the preconditioning value on average within 103 min; however, the decay times significantly depended on the response magnitude after costimulation. In the temporal domain, the latency of new responses appeared to be strongly influenced by the latency of the response during costimulation.Twenty-nine percent of the units displayed no receptive field enlargement, most likely because the activity during costimulation was significantly lower than in the cases with enlarged receptive fields. An unspecific receptive field enlargement towards both the stimulated and non-stimulated side was observed in 34% of the tested cells. In contrast to the cells with specifically enlarged receptive fields, the unspecific increase of receptive field size was always accompanied by a strong increase of the general activity level. We conclude that the receptive field changes presumably took place by strengthening of synaptic inputs at the recorded cells in a Hebbian way as previously shown in the visual cortex in vitro and in vivo. The observed receptive field changes may be related to preattentive perceptual learning and could represent a basis of the 'filling in' of cortical scotomas obtained with specific training procedures in human patients suffering from visual cortex lesions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Association
  • Brain Mapping
  • Cats
  • Conditioning, Psychological
  • Neuronal Plasticity / physiology*
  • Photic Stimulation / methods*
  • Reaction Time
  • Space Perception / physiology*
  • Time Perception / physiology*
  • Visual Cortex / physiology*