Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model

Am J Pathol. 2002 Jun;160(6):2145-55. doi: 10.1016/S0002-9440(10)61163-7.

Abstract

Macrophage-derived foam cells in developing atherosclerotic lesions may potentially originate either from recruitment of circulating monocytes or from migration of resident tissue macrophages. In this study, we have determined the source of intimal macrophages in the apoE-knockout mouse flow-cessation/hypercholesterolemia model of atherosclerosis using a bone marrow transplantation approach. We also examined the time course and spatial distribution of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression to assess whether endothelial adhesion molecules were involved in recruitment of either circulating monocytes or resident macrophages. We used allelic variants of the mouse common leukocyte antigen (CD45) to distinguish host-derived and donor-derived white blood cells (WBCs) both in blood and in macrophage-rich carotid lesions. We found that the distribution of CD45 isoforms in lesions is similar to that of circulating WBCs, whereas the host-type CD45 isoform is more prevalent in resident adventitial macrophages. These data indicate that macrophage-derived foam cells in the lesion derive mainly from circulating precursors rather than from resident macrophages. The corresponding time course of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression suggests that recruitment of circulating WBCs by endothelial adhesion molecules is likely to be more important during lesion initiation than during the later phase of rapid lesion growth.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apolipoproteins E / physiology*
  • Arteriosclerosis / pathology*
  • Bone Marrow Transplantation
  • Carotid Arteries / pathology
  • Disease Models, Animal
  • Female
  • Flow Cytometry
  • Foam Cells / pathology*
  • Gene Frequency
  • Genotype
  • Humans
  • Intercellular Adhesion Molecule-1 / analysis
  • Leukocyte Common Antigens / genetics
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Monocytes / cytology
  • Monocytes / pathology*
  • P-Selectin / analysis
  • Platelet Endothelial Cell Adhesion Molecule-1 / analysis
  • Time Factors
  • Vascular Cell Adhesion Molecule-1 / analysis

Substances

  • Apolipoproteins E
  • P-Selectin
  • Platelet Endothelial Cell Adhesion Molecule-1
  • Vascular Cell Adhesion Molecule-1
  • Intercellular Adhesion Molecule-1
  • Leukocyte Common Antigens