The recent flood of reports using real-time Q-PCR testifies to the transformation of this technology from an experimental tool into the scientific mainstream. Many of the applications of real-time Q-PCR include measuring mRNA expression levels, DNA copy number, transgene copy number and expression analysis, allelic discrimination, and measuring viral titers. The range of applications of real-time Q-PCR is immense and has been fueled in part by the proliferation of lower-cost instrumentation and reagents. Successful application of real-time Q-PCR is not trivial. However, this review will help guide the reader through the variables that can limit the usefulness of this technology. Careful consideration of the assay design, template preparation, and analytical methods are essential for accurate gene quantification.