Manipulating the production and recombination of electrons during electron transfer: Femtosecond control of the charge-transfer-to-solvent (CTTS) dynamics of the sodium anion

J Am Chem Soc. 2002 Jun 26;124(25):7622-34. doi: 10.1021/ja025942d.

Abstract

The scavenging of a solvated electron represents the simplest possible electron-transfer (ET) reaction. In this work, we show how a sequence of femtosecond laser pulses can be used to manipulate an ET reaction that has only electronic degrees of freedom: the scavenging of a solvated electron by a single atom in solution. Solvated electrons in tetrahydrofuran are created via photodetachment using the charge-transfer-to-solvent (CTTS) transition of sodide (Na(-)). The CTTS process ejects electrons to well-defined distances, leading to three possible initial geometries for the back ET reaction between the solvated electrons and their geminate sodium atom partners (Na(0)). Electrons that are ejected within the same solvent cavity as the sodium atom (immediate contact pairs) undergo back ET in approximately 1 ps. Electrons ejected one solvent shell away from the Na(0) (solvent-separated contact pairs) take hundreds of picoseconds to undergo back ET. Electrons ejected more than one solvent shell from the sodium atom (free solvated electrons) do not recombine on subnanosecond time scales. We manipulate the back ET reaction for each of these geometries by applying a "re-excitation" pulse to promote the localized solvated electron ground state into a highly delocalized excited-state wave function in the fluid's conduction band. We find that re-excitation of electrons in immediate contact pairs suppresses the back ET reaction. The kinetics at different probe wavelengths and in different solvents suggest that the recombination is suppressed because the excited electrons can relocalize into different solvent cavities upon relaxation to the ground state. Roughly one-third of the re-excited electrons do not collapse back into their original solvent cavities, and of these, the majority relocalize into a cavity one solvent shell away. In contrast to the behavior of the immediate pair electrons, re-excitation of electrons in solvent-separated contact pairs leads to an early time enhancement of the back ET reaction, followed by a longer-time recombination suppression. The recombination enhancement results from the improved overlap between the electron and the Na(0) one solvent shell away due to the delocalization of the wave function upon re-excitation. Once the excited state decays, however, the enhanced back ET is shut off, and some of the re-excited electrons relocalize even farther from their geminate partners, leading to a long-time suppression of the recombination; the rates for recombination enhancement and relocalization are comparable. Enhanced recombination is still observed even when the re-excitation pulse is applied hundreds of picoseconds after the initial CTTS photodetachment, verifying that solvent-separated contact pairs are long-lived, metastable entities. Taken together, all these results, combined with the simplicity and convenient spectroscopy of the sodide CTTS system, allow for an unprecedented degree of control that is a significant step toward building a full molecular-level picture of condensed-phase ET reactions.