Polyatomic clusters of the triel elements. Palladium-centered clusters of thallium in A(8)Tl(11)Pd, A = Cs, Rb, K

Inorg Chem. 2002 Jul 1;41(13):3457-62. doi: 10.1021/ic020078b.

Abstract

Reactions of the elements within welded Ta containers at approximately 600 degrees C followed by slow cooling give new A(8)Tl(11)Pd(x) products from an apparently continuous encapsulation of Pd atoms into the pentacapped trigonal prismatic anions in the isotypic rhombohedral (R3 macro c) A(8)Tl(11) phases. All systems also produce other phases at x < 1 as well, the simplest being the cesium system in which only trigonal Pd(13)Tl(9) is also formed. Cs(8)Tl(11)Pd(0.84(1)) was characterized by single-crystal means as close to the upper x limit in that system (R3 macro c, Z = 6, a = 10.610(1) A, c = 54.683(8) A). The Pd insertion causes an expansion of the D(3) host anion, particularly about the waist, to generate a trigonal bipyramidal PdTl(5) unit (d(Pd-Tl) approximately 2.6-2.8 A) centered within a somewhat larger Tl(6) trigonal prism, the remainder of the Tl(11) cluster. Strong Tl cage bonding is retained. Extended Hückel calculations show significant involvement of all Tl 6s, 6p and Pd 4d, 5s, 5p orbital sets in the central and cage bonding. The last valence electron is considered to be delocalized in a conduction band, as in A(8)Tr(11) examples, rather than occupying an antibonding e'' LUMO across a gap of approximately 2.4 eV.