Objectives: To study the functional and structural responses of the right dorsal colon (RDC) of ponies to phenylbutazone (PBZ) in vitro at a concentration that could be achieved in vivo.
Animals: 8 adult ponies.
Procedure: Short circuit current and conductance were measured in mucosa from the RDC. Tissues incubated with and without HCO3- were exposed to PBZ, bumetanide, or indomethacin. Bidirectional Cl- fluxes were determined. After a baseline flux period, prostaglandin E2 (PGE2) was added to the serosal surfaces and a second flux period followed. Light and transmission electron microscopy were performed.
Results: Baseline short circuit current was diminished significantly by PBZ and indomethacin, and increased significantly after addictions of PGE2. After PGE2 was added, Cl- secretion increased significantly in tissues in HCO3- -free solutions and solutions with anti-inflammatory drugs, compared with corresponding baseline measurements and with control tissues exposed to PGE2. Bumetanide did not affect baseline short circuit current and Cl- fluxes. The predominant histologic change was apoptosis of surface epithelial cells treated with PBZ and to a lesser extent in those treated with indomethacin.
Conclusions and clinical relevance: Prostaglandin-induced Cl- secretion appeared to involve a transporter that might also secrete HCO3-. Both PBZ and indomethacin altered ion transport in RDC and caused apoptosis; PBZ can damage mucosa through a mechanism that could be important in vivo. The clinically harmful effect of PBZ on equine RDC in vivo could be mediated through its effects on Cl- and HCO3- secretion.