Object: Standard techniques for pedicle screw fixation of the lumbar spine involve open exposures and extensive muscle dissection. The purpose of this study was to report the initial clinical experience with a novel device for percutaneous posterior fixation of the lumbar spine.
Methods: An existing multiaxial lumbar pedicle screw system was modified to allow screws to be placed percutaneously by using an extension sleeve that permits remote manipulation of the polyaxial screw heads and remote engagement of the screw-locking mechanism. A unique rod-insertion device was developed that linked to the screw extension sleeves, allowing for a precut and -contoured rod to be placed through a small stab wound. Because the insertion device relies on the geometrical constraint of the rod pathway through the screw heads, minimal manipulation is required to place the rods in a standard submuscular position, there is essentially no muscle dissection, and the need for direct visual feedback is avoided. Twelve patients (six men and six women) who ranged in age from 23 to 68 years underwent pedicle screw fixation in which the rod-insertion device was used. Spondylolisthesis was present in 10 patients and osseous nonunion of a prior interbody fusion was present in two. All patients underwent successful percutaneous fixation. Ten patients underwent single-level fusions (six at L5-S1, three at L4-5, and one at L2-3), and two underwent two-level fusions (one from L3-5 and the other from L4-S1). The follow-up period ranged from 10 to 19 months (mean 13.8 months).
Conclusions: Although percutaneous lumbar pedicle screw placement has been described previously, longitudinal connector (rod or plate) insertion has been more problematic. The device used in this study allows for straightforward placement of lumbar pedicle screws and rods through percutaneous stab wounds. Paraspinous tissue trauma is minimized without compromising the quality of spinal fixation. Preliminary experience involving the use of this device has been promising.