The responses of neurons in the primate and cat primary visual cortices (V1s) to the stimuli within their classical receptive fields (CRFs) are markedly suppressed by the surrounding stimuli outside CRFs. In the present study, we show that a similar suppressive effect occurs for visually evoked magnetic responses in the human visual cortex. The initial peak amplitude of the magnetic response (at a latency of around 90 ms) to a test grating accompanied by high-contrast surround gratings was smaller than that for the test without the surround. Current source localization with a single dipole model indicated that the initial response originated from cortical activity near the occipital pole in the contralateral hemisphere to the visual stimulation. The peak amplitude for the test decreased with increasing surround contrast, and increased with increasing test contrast. The contrast dependence and the early development of the surround suppression were in agreement with the results of the V1 single-cell studies of monkeys and cats. We suggest that the surround suppression of the initial peak amplitude of the magnetic response may be ascribed to the inhibition of the neural activity at the early processing stage(s), presumably at V1, in the human visual cortex.