A blind patch-clamp technique for in vivo whole-cell recordings in the intact brain is described. Recordings were obtained from various neuronal cell types located 100-5,000 microm from the cortical surface. Access resistance of recordings was as low as 10 M Omega but increased with recording depth and animal age. Recordings were remarkably stable and it was therefore possible to obtain whole-cell recordings in awake, head-fixed animals. The whole-cell configuration permitted rapid dialysis of cells with a calcium buffer. In most neurons very little ongoing action potential (AP) activity was observed and the spontaneous firing rates were up to 50-fold less than what has been reported by extracellular unit recordings. AP firing in the brain might therefore be far sparser than previously thought.