The Human Genome Project, the mapping of our 30,000-50,000 genes and the sequencing of all of our DNA, will have major impact on biomedical research and the whole of therapeutic and preventive health care. The tracing of genetic diseases to their molecular causes is rapidly expanding diagnostic and preventive options. The increased insights into molecular pathways, gained from high-throughput 'functional genomics', using DNA-chip and protein-chip approaches and specially designed animal model systems, will open great prospects for pharmacological and genetic therapies. Powerful bioinformatics and biostatistics will further improve our pattern recognition and accelerate progress. A rapidly expanding area of high expectations is that of 'pharmacogenomics': the design of more effective drugs with lower toxicity through tailoring of drug treatment to individual, genetically determined differences in drug metabolism. Not only will this decrease the cost of health care through reduction of adverse drug reactions, but a better stratification of populations will also provide more statistical power farther upstream in drug trials. However, the optimal benefits from the current explosion of 'data mining' will only be realized when the basic data are made and kept publicly accessible, while at the same time safeguarding the protection of intellectual property arising from downstream inventions. This is one of the goals of HUGO, the international Human Genome Organization, established 13 years ago to assist coordination of data acquisition and exchange and societal implementation of the genome project. Additional points of attention in this historic endeavour are the prevention of stigmatization and discrimination and the safeguarding of a worldwide balance in the contribution by--and benefits to--different populations, while respecting the diversity in cultures and traditions.