Computerized lesion detection on breast ultrasound
- PMID: 12148724
- DOI: 10.1118/1.1485995
Computerized lesion detection on breast ultrasound
Abstract
We investigated the use of a radial gradient index (RGI) filtering technique to automatically detect lesions on breast ultrasound. After initial RGI filtering, a sensitivity of 87% at 0.76 false-positive detections per image was obtained on a database of 400 patients (757 images). Next, lesion candidates were segmented from the background by maximizing an average radial gradient (ARD) index for regions grown from the detected points. At an overlap of 0.4 with a radiologist lesion outline, 75% of the lesions were correctly detected. Subsequently, round robin analysis was used to assess the quality of the classification of lesion candidates into actual lesions and false-positives by a Bayesian neural network. The round robin analysis yielded an Az value of 0.84, and an overall performance by case of 94% sensitivity at 0.48 false-positives per image. Use of computerized analysis of breast sonograms may ultimately facilitate the use of sonography in breast cancer screening programs.
Similar articles
-
Automatic segmentation of breast lesions on ultrasound.Med Phys. 2001 Aug;28(8):1652-9. doi: 10.1118/1.1386426. Med Phys. 2001. PMID: 11548934
-
Computerized detection and classification of cancer on breast ultrasound.Acad Radiol. 2004 May;11(5):526-35. doi: 10.1016/S1076-6332(03)00723-2. Acad Radiol. 2004. PMID: 15147617
-
Multimodality computerized diagnosis of breast lesions using mammography and sonography.Acad Radiol. 2005 Aug;12(8):970-9. doi: 10.1016/j.acra.2005.04.014. Acad Radiol. 2005. PMID: 16087091
-
Case study: evaluating accuracy of cancer diagnostic tests.Cancer Treat Res. 2002;113:219-32. doi: 10.1007/978-1-4757-3571-0_10. Cancer Treat Res. 2002. PMID: 12613356 Review. No abstract available.
-
Signal detectability: the use of ROC curves and their analyses.Med Decis Making. 1991 Apr-Jun;11(2):102-6. doi: 10.1177/0272989X9101100205. Med Decis Making. 1991. PMID: 1865776 Review.
Cited by
-
Development of a nomogram-based model combining intra- and peritumoral ultrasound radiomics with clinical features for differentiating benign from malignant in Breast Imaging Reporting and Data System category 3-5 nodules.Quant Imaging Med Surg. 2023 Oct 1;13(10):6899-6910. doi: 10.21037/qims-23-283. Epub 2023 Sep 22. Quant Imaging Med Surg. 2023. PMID: 37869276 Free PMC article.
-
Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling.Healthcare (Basel). 2022 Nov 25;10(12):2367. doi: 10.3390/healthcare10122367. Healthcare (Basel). 2022. PMID: 36553891 Free PMC article.
-
Fully automatic tumor segmentation of breast ultrasound images with deep learning.J Appl Clin Med Phys. 2023 Jan;24(1):e13863. doi: 10.1002/acm2.13863. Epub 2022 Dec 9. J Appl Clin Med Phys. 2023. PMID: 36495018 Free PMC article.
-
Breast lesion detection using an anchor-free network from ultrasound images with segmentation-based enhancement.Sci Rep. 2022 Aug 30;12(1):14720. doi: 10.1038/s41598-022-18747-y. Sci Rep. 2022. PMID: 36042216 Free PMC article.
-
BUSnet: A Deep Learning Model of Breast Tumor Lesion Detection for Ultrasound Images.Front Oncol. 2022 Mar 25;12:848271. doi: 10.3389/fonc.2022.848271. eCollection 2022. Front Oncol. 2022. PMID: 35402269 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
