Microevolutionary genomics of bacteria

Theor Popul Biol. 2002 Jun;61(4):435-47. doi: 10.1006/tpbi.2002.1588.


The availability of multiple complete genome sequences from the same species can facilitate attempts to systematically address basic questions in genome evolution. We refer to such efforts as "microevolutionary genomics". We report the results of comparative analyses of complete intraspecific genome (and proteome) sequences from four bacterial species--Chlamydophila pneumoniae, Escherichia coli, Helicobacter pylori and Neisseria meningitidis. Comparisons of average synonymous (K(s)) and nonsynonymous (K(a)) substitution rates were used to assess the influence of various biological factors on the rate of protein evolution. For example, E. coli experiences the most intense purifying selection of the species analyzed, and this may be due to the relatively larger population size of this species. In addition, essential genes were shown to be more evolutionarily conserved than nonessential genes in E. coli and duplicated genes have higher rates of evolution than unique genes for all species studied except C. pneumoniae. Different functional categories of genes were shown to evolve at significantly different rates emphasizing the role of category-specific functional constraints in determining evolutionary rates. Finally, functionally characterized genes tend to be conserved between strains, while uncharacterized genes are over-represented among the unique, strain-specific genes. This suggests the possibility that nonessential genes are responsible for driving the evolutionary diversification between strains.

Publication types

  • Review

MeSH terms

  • Bacteria / genetics*
  • Biological Evolution*
  • Gene Duplication
  • Genome, Bacterial*