Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis

Biochim Biophys Acta. 2002 Aug 31;1564(2):333-42. doi: 10.1016/s0005-2736(02)00467-4.


The human reduced folate carrier (RFC) is the major membrane transport system for both reduced folates and chemotherapeutic antifolate drugs, such as methotrexate (MTX). Although the RFC protein has been subjected to intensive study in order to identify critical structural and functional determinants of transport, it is impossible to assess the significance of these studies without characterizing the essential domain structure and membrane topology. The primary amino acid sequence from the cloned cDNAs predicts that the human RFC protein has 12 transmembrane domains (TMDs) with a large cytosolic loop between TMDs 6 and 7, and cytosolic-facing N- and C-termini. To establish the RFC membrane topology, a hemagglutinin (HA) epitope was inserted into the individual predicted intracellular and extracellular loops. HA insertions into putative TMD interconnecting loops 3/4, 6/7, 7/8, and 8/9, and the N- and C-termini all preserved MTX transport activity upon expression in transport-impaired K562 cells. Immunofluorescence detection with HA-specific antibody under both permeabilized and non-permeabilized conditions confirmed extracellular orientations for loops 3/4 and 7/8, and cytosolic orientations for loops 6/7 and 8/9, and the N- and C-termini. Insertion of a consensus N-glycosylation site [NX(S/T)] into putative loops 5/6, 8/9, and 9/10 of deglycosylated RFC-Gln(58) had minimal effects on MTX transport. Analysis of glycosylation status on Western blots suggested an extracellular orientation for loop 5/6, and intracellular orientations for loops 8/9 and 9/10. Our findings strongly support the predicted topology model for TMDs 1-8 and the C-terminus of human RFC. However, our results raise the possibility of an alternative membrane topology for TMDs 9-12.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Binding Sites
  • Carrier Proteins / chemistry*
  • Cells, Cultured
  • Epitopes / chemistry
  • Epitopes / immunology
  • Fluorescent Antibody Technique
  • Glycosylation
  • Hemagglutinins / chemistry*
  • Hemagglutinins / immunology
  • Humans
  • Membrane Transport Proteins / chemistry*
  • Mutagenesis, Insertional / methods
  • Protein Structure, Tertiary*
  • Reduced Folate Carrier Protein


  • Carrier Proteins
  • Epitopes
  • Hemagglutinins
  • Membrane Transport Proteins
  • Reduced Folate Carrier Protein
  • SLC19A1 protein, human