Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress

J Lipid Res. 2002 Aug;43(8):1293-302.


Ceramides (Cers), critical for epidermal barrier function, also can inhibit keratinocyte proliferation, while glucosylceramides (GlcCers) exert pro-mitogenic effects. Since alterations in Cer-to-GlcCer ratios appear to modulate cellular growth versus apoptosis, we assessed whether keratinocytes up-regulate GlcCer synthesis as a protective mechanism against Cer-induced stress. Exogenous sphingomyelinase (SMase) treatment of cultured human keratinocytes (CHK) initially decreased proliferation and cellular sphingomyelin (50-60% decrease; P < 0.001), and increased Cer levels (6.1- to 6.8-fold; P < 0.001). Proliferation recovered to normal rates by 24 h, in parallel with increased cellular GlcCer. Both GlcCer synthesis and GlcCer synthase activity increased significantly by 8 h following SMase (8.2- and 2.4-fold, respectively; P < 0.01 each vs. control), attributed to antecedent increases in GlcCer synthase mRNA and protein expression. Further evidence that GlcCer production is responsible for normalized CHK proliferation includes: a) attenuation of SMase-induced inhibition of proliferation by exogenous GlcCer; and b) enhancement of the SMase effect in cells cotreated with the GlcCer synthase inhibitor, PDMP (D-threo-1-phenyl-2(decanoylamino)-3-morpholino-1-propanol). Finally, although proliferation in immortalized, nontransformed keratinocytes (HaCaT) also was inhibited by SMase, HaCaT cells that overexpress GlcCer synthase were resistant to this effect. Thus, SMase-induced stress initiates a response in keratinocytes that includes upregulation of GlcCer synthesis which may protect against the deleterious effects of excess Cer.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Blotting, Northern
  • Blotting, Western
  • Cells, Cultured
  • Ceramides / biosynthesis*
  • Ceramides / pharmacology*
  • DNA Primers
  • DNA Replication
  • Glucosyltransferases / biosynthesis*
  • Humans
  • Oxidative Stress*
  • Reverse Transcriptase Polymerase Chain Reaction


  • Ceramides
  • DNA Primers
  • Glucosyltransferases
  • ceramide glucosyltransferase