Chimeric oligonucleotides comprised of alternating residues of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (2'F-ANA) and DNA were synthesized and evaluated for an important antisense property-the ability to elicit ribonuclease H (RNase H) degradation of complementary RNA. Experiments used both human RNase HII and Escherichia coli RNase HI. Mixed backbone oligomers comprising alternating three-nucleotide segments of 2'F-ANA and three-nucleotide segments of DNA were the most efficient at eliciting RNase H degradation of target RNA, and were significantly better than oligonucleotides entirely composed of DNA, suggesting that these mixed backbone oligonucleotides may be potent antisense agents.