Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine and myo-inositol, individually and in combination

Carcinogenesis. 2002 Sep;23(9):1455-61. doi: 10.1093/carcin/23.9.1455.

Abstract

Isothiocyanates, their N-acetylcysteine conjugates, and myo-inositol (MI) are inhibitors of lung tumorigenesis in A/J mice. However, chemoprevention by combinations of these compounds in different temporal sequences has not been examined. This is important for developing practical approaches to lung cancer chemoprevention in smokers and ex-smokers. We used a tumor model in which A/J mice are treated with 8 weekly doses of benzo[a]pyrene (B[a]P) plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and killed 19 weeks after the final treatment. In Experiment 1, isothiocyanates or their N-acetylcysteine conjugates were added to the diet (1 or 3 micro mol/g) from 1 week before until 1 week after carcinogen treatment. The compounds were 2-phenethyl isothiocyanate (PEITC), 3-phenylpropyl isothiocyanate (PPITC), N-acetyl-S-(N-benzyl-thiocarbamoyl)-L-cysteine (BITC-NAC), N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine (PEITC-NAC), and N-acetyl-S-(N-3-phenylpropylthiocarbamoyl)-L-cysteine (PPITC-NAC). Significant reductions in lung tumor multiplicity were observed in mice treated with PEITC, PEITC-NAC, PPITC and PPITC-NAC. PEITC-NAC was chosen for combination studies with MI (Experiment 2). Mice were treated with B[a]P plus NNK without or with PEITC-NAC (3 micro mol/g diet), MI (55.5 micro mol/g diet), or PEITC-NAC plus MI (3 micro mol plus 55.5 micro mol/g diet). Different temporal sequences of dietary additions were investigated: carcinogen treatment phase; post-carcinogen treatment phase; entire experiment; 50% of carcinogen treatment phase until termination; and 75% of carcinogen treatment phase until termination. All treatments reduced lung tumor multiplicity except PEITC-NAC post-carcinogen or from 75% of the carcinogen treatment phase. Reduction of lung tumor multiplicity by PEITC-NAC plus MI was greater than that in the mice treated with the agents alone in all temporal sequences. When all results were combined, PEITC-NAC plus MI was significantly more effective than the agents alone. There was a significant trend for reduction in lung tumor multiplicity with increased duration of treatment by the chemopreventive agents. These results provide a basis for further development of mixtures of PEITC-NAC and MI for chemoprevention of lung cancer.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Carcinogenicity Tests
  • Cell Transformation, Neoplastic
  • Cysteine / analogs & derivatives
  • Cysteine / therapeutic use*
  • Disease Models, Animal
  • Female
  • Inositol / therapeutic use*
  • Isothiocyanates / chemistry
  • Lung Neoplasms / chemically induced
  • Lung Neoplasms / prevention & control*
  • Mice
  • Thiocarbamates / therapeutic use*

Substances

  • Antineoplastic Agents
  • Isothiocyanates
  • N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine
  • Thiocarbamates
  • Inositol
  • phenethyl isothiocyanate
  • Cysteine