Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory

Magn Reson Med. 2002 Aug;48(2):297-305. doi: 10.1002/mrm.10212.


Time-resolved contrast-enhanced 3D MR angiography (MRA) methods have gained in popularity but are still limited by the tradeoff between spatial and temporal resolution. A method is presented that greatly reduces this tradeoff by employing undersampled 3D projection reconstruction trajectories. The variable density k-space sampling intrinsic to this sequence is combined with temporal k-space interpolation to provide time frames as short as 4 s. This time resolution reduces the need for exact contrast timing while also providing dynamic information. Spatial resolution is determined primarily by the projection readout resolution and is thus isotropic across the FOV, which is also isotropic. Although undersampling the outer regions of k-space introduces aliased energy into the image, which may compromise resolution, this is not a limiting factor in high-contrast applications such as MRA. Results from phantom and volunteer studies are presented demonstrating isotropic resolution, broad coverage with an isotropic field of view (FOV), minimal projection reconstruction artifacts, and temporal information. In one application, a single breath-hold exam covering the entire pulmonary vasculature generates high-resolution, isotropic imaging volumes depicting the bolus passage.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Abdomen / blood supply
  • Artifacts
  • Contrast Media*
  • Gadolinium DTPA*
  • Humans
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Angiography / methods*
  • Phantoms, Imaging
  • Thorax / blood supply


  • Contrast Media
  • Gadolinium DTPA