Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice

Pharmacol Biochem Behav. 2002 Nov;73(4):941-9. doi: 10.1016/s0091-3057(02)00951-6.

Abstract

The effect of imipramine and alpha-adrenoceptor agonists and antagonists on the acquisition or expression of morphine-induced conditioned place preference (CPP) was studied in mice. An unbiased CPP paradigm was used to study the effect of the agents. In the first set of experiments, the drugs were used during the development of CPP by morphine or they were used alone in order to see if they induce CPP or conditioned place aversion (CPA). Our data showed that intraperitoneal injection of morphine sulphate (2.5-10 mg/kg) induced CPP in mice. Imipramine (0.5-2.5 mg/kg), phenylephrine (0.5-2 mg/kg), yohimbine (0.5-2 mg/kg) or prazosin (0.1-1 mg/kg) did not influence CPP, but clonidine (0.002-0.05 mg/kg) induced CPA. Yohimbine increased, while clonidine and prazosin reversed, morphine-induced CPP. Phenylephrine did not influence the CPP induced by morphine. In the second set of experiments, when the drugs were used before testing on Day 6, in order to test their effects on the expression of morphine-induced CPP, imipramine (0.5-5 mg/kg) reversed morphine-induced CPP and this reversal was blocked by naloxone (2 mg/kg). Clonidine and prazosin reversed, while yohimbine decreased morphine-induced CPP. Phenylephrine did not alter the morphine response. Furthermore, yohimbine and prazosin reversed the imipramine effect. None of the drugs influenced locomotion. However, prazosin or yohimbine in combination with morphine altered locomotor activity during the acquisition of CPP. Yohimbine by itself increased locomotion. It is concluded that imipramine can induce CPA through an opioid receptor mechanism and alpha-adrenoceptor agents may influence morphine CPP.

MeSH terms

  • Animals
  • Conditioning, Psychological / drug effects*
  • Conditioning, Psychological / physiology
  • Dose-Response Relationship, Drug
  • Imipramine / pharmacology*
  • Male
  • Mice
  • Morphine / pharmacology*
  • Motor Activity / drug effects
  • Motor Activity / physiology

Substances

  • Morphine
  • Imipramine